Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Xing Wang,* Feng-Ying Geng, Hong-Fei Wu, Jian Xu and Ren-Qing Gao

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.024$
$w R$ factor $=0.061$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
\{2-[1-(N-Benzyl-N-methylamino)ethyl]ferrocenyl$\left.\kappa^{2} N, C^{1}\right\}$ chloro(triphenylphosphine- κP) palladium(II)

The title compound, $\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, a new cyclopalladated complex, has been synthesized and structurally characterized. The $\mathrm{Pd}^{\mathrm{II}}$ atom is in a slightly distorted square-planar environment. The dihedral angle between the cyclopentadienyl rings of the ferrocenyl group is $0.7(2)^{\circ}$.

Comment

Cycloplatination reactions have attracted much attention in recent decades due to their applications in organic syntheses (Fossy \& Richards, 1999). However, only a few examples of cyclopalladated complexes with N -donor ligands have been reported (Ryabov et al., 2002). As part of our ongoing investigation of the cyclometallation of tertiary ferrocenylamines (Wang et al., 2006), the title compound, (I), has been synthesized and we report its crystal structure.

(I)

In compound (I), the Pd atom is in a slightly distorted square-planar environment. The coordination plane is defined by the atoms $\mathrm{Pd} 1 / \mathrm{N} 1 / \mathrm{Cl} 1 / \mathrm{C} 1 / \mathrm{P} 3$, and the deviations of these atoms from this plane are -0.077 (2), 0.121 (1), $-0.070(2)$, -0.085 (1) and 0.111 (2) \AA, respectively. The dihedral angle between the cyclopentadienyl rings of the ferrocenyl group is 0.7 (2) ${ }^{\circ}$.

Experimental

A solution of sodium tetrachloropalladate(II) ($150 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol (15 ml) was added dropwise to a stirred solution of $\{1-[(N-$ methyl- N-benzyl)amino]ethylfferrocene ($167 \mathrm{mg}, \quad 0.5 \mathrm{mmol}$) and sodium acetate ($41 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol (20 ml). The mixture was stirred at room temperature for 4 h . Triphenylphosphine ($220 \mathrm{mg}, 0.8 \mathrm{mmol}$) was then added and the mixture was stirred for another 30 min . The solvent was removed in vacuo and the solid residue was recrystallized from anhydrous ethanol to obtain compound (I) (yield 63%). Crystals of (I) were grown by slow evaporation of an ethyl acetate-petroleum ether solution (3:1) at room temperature over a period of one week. Analysis, calculated for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{ClFeNPPd}$: C 61.98 , H 5.06, N 1.90%; found: C 61.77, H 5.00, N 1.89%.

Received 16 May 2006
Accepted 30 May 2006

metal-organic papers

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=736.36$
Orthorhombic, Pbca
$a=16.878$ (4) A
$b=16.488$ (4) \AA
$c=24.107$ (5) \AA
$V=6709(2) \AA^{3}$

Data collection

Bruker APEX-II CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.701, T_{\text {max }}=0.801$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.061$
$S=1.02$
5924 reflections
390 parameters
H -atom parameters constrained
$Z=8$
$D_{x}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.12 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, red
$0.32 \times 0.26 \times 0.20 \mathrm{~mm}$

34744 measured reflections 5924 independent reflections 4851 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0234 P)^{2}\right.} \\
&+4.0356 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.56 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

Pd1-C1	$1.993(2)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.512(3)$
$\mathrm{Pd} 1-\mathrm{N} 1$	$2.1962(19)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.437(3)$
$\mathrm{Pd} 1-\mathrm{P} 3$	$2.2452(7)$	$\mathrm{C} 5-\mathrm{C} 11$	$1.497(4)$
$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.4107(8)$		
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$81.93(8)$	$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$174.71(7)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{P} 3$	$98.56(7)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$92.81(6)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{P} 3$	$169.99(6)$	$\mathrm{P} 3-\mathrm{Pd} 1-\mathrm{Cl} 1$	$86.71(2)$

All H atoms were initially located in difference Fourier maps. The methyl H atoms were then constrained to an ideal geometry, with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. There are solvent-accessible voids of $53 \AA^{3}$ in the structure. However, the highest peak of the residual density is located $1.32 \AA$ from the Pd atom.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve

Figure 1
A view of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We are grateful to the Natural Science Foundation of Tianjin Metropolitan Council, People's Republic of China, for financial support (Project No. 033609011).

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fossy, J. S. \& Richards, C. J. (1999). Organometallics, 18, 2116-2124
Ryabov, A. D., Panyashkina, I. M., Polyakov, V. A. \& Fischer, A. (2002). Organometallics, 21, 1633-1636.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wang, H.-X., Wu, H.-F., Geng, F.-Y., Gao, R.-Q. \& Zhou, H.-C. (2006). Acta Cryst. E62, m14-m15.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

